Experiment 10 - Superposition

EL 111 - DC Fundamentals

By: Walter Banzhaf, E.K. Smith, and Winfield Young
University of Hartford
Ward College of Technology

Objectives:

1. For the student to calculate circuit voltages and currents, when more than one voltage source is present, by the process of superposition and verify calculations by measurements.

Equipment and parts:

$$
\begin{array}{ll}
\text { Meters: } & \begin{array}{l}
\text { Digital Multimeter (DMM); } \\
\text { Milliammeter or Handheld MM such as the Agilent } 971 \mathrm{~A}
\end{array} \\
\text { Power Supply: } & \text { Agilent E3631A Triple Output DC Power Supply }\left(0-20 \mathrm{~V}_{\mathrm{DC}},+5 \mathrm{~V}_{\mathrm{DC}}\right) \\
\text { Resistors: } & 1-3 \mathrm{k} \Omega, 1-1.2 \mathrm{k} \Omega, 1-1.6 \mathrm{k} \Omega \\
\text { Misc: } & \text { Component Board }
\end{array}
$$

Information:

Superposition is a process for calculating currents and/or voltages for a component in a circuit which has more than one source.

The superposition techniques involve the following steps:
Step 1 Remove all sources except one. You elect which one remains since eventually each existing source will be the stand-alone source before the analysis is complete. Replace the removed sources with their internal resistances. (Note: for this lab you will use voltage sources with a resistance of zero and will be instructed to replace the source with a short). Calculate the current(s) and/or voltage(s) with the one remaining source in the circuit for the resistor(s) in which you have an interest. Record the amount and direction of current and/or the magnitude and polarity of voltage across each resistor of interest.

Step 2 Remove the source used in Step 1 and replace another source previously removed. Calculate the current(s) and/or voltage(s) of interest, recording directions, polarities and magnitudes of the current and voltage of interest.
Step 3 Repeat Step 2 until all sources in the original circuit have been used.
Step 4 The actual current and/or voltage for any one resistor will be the algebraic sum of the currents and/or voltages found above for that particular resistor.

Procedure:

1. Refer to Figure 1. Use the following steps to calculate the current through and the voltage across R_{L} (the resistor of interest) by superposition techniques.

Step $1 \mathbf{E}_{\mathrm{a}}$ is present, E_{b} is removed. Refer to figure 2. Remove E_{b}, and replace it with a short. (This assume that the voltage source has no internal resistance.) Solve for the magnitude and direction of the current through R_{L} in figure 2 . Calculate the voltage drop across R_{L}. Determine the polarity of the voltage drop. Record the current, its direction, the voltage drop and the polarity on figure 2. Show your calculations in space provided.

Calculations (E_{b} removed):

Step 2 Refer to figure 3. Remove the short and replace E_{b}. Refer to figure 3. Remove E_{a} and replace it with a short. Solve for the magnitude and direction of the current through R_{L} in figure 3. Calculate the voltage drop across R_{L}. Determine the polarity of the voltage drop. Record the current, its direction, the voltage drop and the polarity on figure 3 . Show your calculations in space provided.

Calculations (E_{a} removed):

$I_{\text {RL }}$ \qquad
\qquad
$E_{\text {RL }}$

EducatorsCorner.com Experiments

Step 3 The actual current through and voltage across R_{L} WILL BE the ALGEBRAIC SUM of the results obtained in steps 1 and 2 . Do these summations below and record the resultant current and its direction and the voltage drop and its polarity on Figure 1 on page two.

Algebraic addition: $\quad \mathrm{E}_{\mathrm{RL}}=$ \qquad $+$ \qquad $=$ \qquad

$$
I_{\mathrm{RL}}=
$$

\qquad $+$ \qquad
\qquad
2. Verify the results of the superposition calculations by circuit measurement.
a) Connect the circuit of Figure 1. NOTE: Make sure that the DMM common is at point b.
b) Measure the following:
$\mathrm{E}_{\mathrm{RL}}=$ \qquad and point \qquad is positive in respect to point \qquad .
$\mathrm{I}_{\mathrm{RL}}=$ \qquad , current flows from point \qquad to point \qquad .
c) If the calculated results are not reasonable close to the measured results, check your calculations and measurements to find the error.
3. On a separate sheet of paper, repeat Procedures 1 and 2 except reverse the polarity of $\mathbf{E}_{\mathbf{a}}$. Show all three circuit diagrams and all calculations as contained in Procedures 1 and 2 of this experiment.

